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Abstract

In this paper we present a random walk model for approximating a Lévy–Feller advection–dispersion process, governed
by the Lévy–Feller advection–dispersion differential equation (LFADE). We show that the random walk model converges
to LFADE by use of a properly scaled transition to vanishing space and time steps. We propose an explicit finite difference
approximation (EFDA) for LFADE, resulting from the Grünwald–Letnikov discretization of fractional derivatives. As a
result of the interpretation of the random walk model, the stability and convergence of EFDA for LFADE in a bounded
domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
� 2006 Published by Elsevier Inc.
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1. Introduction

Recently a growing number of researchers have utilized fractional calculus in a variety of applied fields
resulting in fractional differential equations being used across many fields of science and engineering [1–4].
Liu et al. [5–7] simulated Lévy motion with a-stable densities using a fractional advection–dispersion equation.
Lynch [8] discussed a possible mechanism underlying plasma transport in magnetically confined plasmas.
Gorenflo and Mainardi [9], Gerenflo and Vivoli [10] presented a probability density function for diffusion lim-
its. Diethelm [11] described physical phenomena such as damping laws and diffusion processes via fractional
differential equations. As is well-known, analytic solutions of most fractional differential equations cannot be
obtained explicitly, so many authors resort to numerical solution strategies based on convergence and stability
analyses [8,12–14].
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Gorenflo and Abdel-Rehim [15] and Abdel-Rehim [16] proposed discrete approximations to spatially one-
dimensional time-fractional diffusion processes with drift towards the origin, by generalization of Ehrenfest’s
urn model. Then they interpreted discrete approximations (a) as difference schemes (explicit and implicit),
(b) as random walk models, and discussed their convergence from the probabilistic standpoint, instead of
strong convergence in the supremum norm discussed in the present paper.

One type of fractional differential equations, the fractional advection–dispersion equation, is used in
groundwater hydrology research to model the transport of passive tracers carried by fluid flow in a porous
medium. Meerschaert and Tadjeran [17] presented numerical methods to solve the one-dimensional fractional
advection–dispersion equations with variable coefficients on a finite domain.

Recently some authors discussed the Lévy–Feller diffusion process, and demonstrated that it could be dealt
with by a generalized diffusion equation [19–21]. We stress that Gorenflo and Mainardi [19,20] have coined the
name ‘‘Lévy–Feller diffusion process’’, and they presented a random walk model for approximating the Lévy–
Feller diffusion process and produced sample paths of individual particles performing the random walk using
Monte Carlo simulation. They proved weak convergence (also called ‘‘convergence in distribution’’ or ‘‘con-
vergence in law’’) of the discrete solution towards the probability law of the process.

In this paper, a drift term is added to the Lévy–Feller diffusion equation. Following Gorenflo and Mainardi
[19,20] and Gorenflo et al. [21], we call the described process a ‘‘Lévy–Feller advection–dispersion process’’. In
contrast to [19–21], we have extended the processes to the case of bounded spatial domain and for this situ-
ation we give an analysis of stability and convergence in the supremum norm which is appropriate in numer-
ical analysis.

We first introduce some notations of the Lévy–Feller diffusion process adopted in [19–21] and use this nota-
tion throughout the paper. Feller [22] investigated the semigroups of one-dimensional pseudo-differential
operators arising by inversion of linear combinations of left and right hand sided Riemann–Liouville opera-
tors. These semigroups describe space-fractional diffusion processes evolving in time. Lévy [23] interpreted the
semigroups as stable distributions of some stochastic processes from the probabilistic standpoint.

The Lévy–Feller diffusion was then introduced for studying stable stochastic Markovian processes. Let
pa(x;h) denote for x 2 R, jhj 6 2 � a, 1 < a 6 2 the stable probability distribution whose characteristic function
(Fourier transform) [20] is
p̂aðk; hÞ ¼ expð�jkjaeisignðkÞhp=2Þ; ðk 2 RÞ: ð1Þ

Introducing the similarity variable xt�

1
a, we obtain
gaðx; t; hÞ ¼ t�
1
apa xt�

1
a; h

� �
; ðx 2 R; t > 0Þ; ð2Þ
where x is the space variable and t the time variable. The Fourier transform of ga(x, t;h) is
ĝaðj; t; hÞ ¼ expð�tjjjaeisignðkÞhp=2Þ; ðj 2 RÞ: ð3Þ
The function ga(x, t;h) is considered as the fundamental solution of the generalized diffusion equation
ouðx; tÞ
ot

¼ Da
huðx; tÞ; ðx 2 R; t > 0Þ; ð4Þ
where the operator Da
h is the Riesz–Feller fractional derivative (in space) of order a and skewness h.

In this paper, we discuss the Lévy–Feller advection–dispersion equation (LFADE) including an advection
term:
ouðx; tÞ
ot

¼ aDa
huðx; tÞ � b

ouðx; tÞ
ox

ð5Þ
with initial condition:
uðx; 0Þ ¼ uðxÞ; ð6Þ
where x 2 R, t > 0, and a > 0, b P 0.
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The fundamental solution of (5) and (6) has been derived using the Fourier transform [24] as
bGaðj; t; hÞ ¼ expð�tajjjaeisignðkÞhp=2 þ itbjÞ; ðj 2 RÞ: ð7Þ
As mentioned above, Feller [22] has showed that the pseudo-differential operator Da
h can be viewed as the in-

verse to the Feller potential, which is a linear combination of two Riemann–Liouville differential operators.
We introduce the Riemann–Liouville integral:
Ia
þf ðxÞ ¼ 1

CðaÞ
R x
�1ðx� nÞa�1f ðnÞdn;

Ia
�f ðxÞ ¼ 1

CðaÞ
Rþ1

x ðn� xÞa�1f ðnÞdn

8<: ð8Þ
and the coefficients
cþ ¼ cþða; hÞ :¼ sinðða�hÞp=2Þ
sinðapÞ ;

c� ¼ c�ða; hÞ :¼ sinððaþhÞp=2Þ
sinðapÞ :

8<: ð9Þ
It is easily proved that c± 6 0 when 1 < a 6 2.
Following the notation by Gorenflo and Mainardi [19], the Feller potential reads
Ia
hf ðxÞ ¼ cþða; hÞIa

þf ðxÞ þ c�ða; hÞIa
�f ðxÞ:
In [22] Feller showed that the operator Ia
h possesses the semigroup property
Ia
hIb

h ¼ Iaþb
h for 0 < a; b < 1 and aþ b < 1:
Using the Feller potential, Gorenflo et al. [19] defined the Riesz–Feller operator
Da
h :¼ �I�a

h ¼ �½cþða; hÞI�a
þ þ c�ða; hÞI�a

� �; ð1 < a 6 2Þ; ð10Þ
where I�a
þ and I�a

� are the inverse of the integral operators Ia
þ and Ia

� respectively. For integral representations
of the Riemann–Liouville fractional derivative operators I�a

� [2], we have
I�a
� ¼

d2

dx2
I2�a
� :
In particular, we have D2
0 ¼ d2

dx2.
The introduction of Feller’s and Riemann–Liouville’s considerations helps us construct a difference scheme

via the Grünwald–Letnikov discretization of fractional derivatives, which is interpreted as a discrete random
walk model. We then prove that the discrete random walk model converges to the Lévy–Feller advection–dis-
persion process.

This paper is organized as follows. In Section 2, we discuss the discrete random walk approach to the
LFADE, which is based on the well-known Grünwald–Letnikov discretization of fractional derivatives. In
Section 3, we discuss the convergence and domain of attraction. We prove that the discrete probability distri-
bution generated by the random walk model belongs to the domain of attraction of the corresponding stable
distribution. In Section 4 we propose an explicit finite difference scheme for solving LFADE. In Section 5 we
give the stability and convergence analyses of the numerical scheme. Finally, numerical results are presented to
show the application of the present technique.
2. Discrete random walk in space and time

In this section, we present a discrete random walk model for the LFADE with the initial condition:
uðx; 0Þ ¼ dðxÞ; ðx 2 RÞ; ð11Þ

where d(x) is the Dirac delta function.



60 Q. Liu et al. / Journal of Computational Physics 222 (2007) 57–70
We discretize space and time by the grid points
xj ¼ jh; h > 0; j ¼ 0;�1;�2; . . .
and time instants
tn ¼ ns; s > 0; n ¼ 0; 1; 2; . . . :
The dependent variable u is then discretized by introducing yj(tn) as
yjðtnÞ ¼
Z xjþh=2

xj�h=2

uðx; tnÞdx � huðxj; tnÞ:
To obtain a random walk model for LFADE, we approximate the first-order derivatives ou
ot and ou

ox in LFADE
by using the first-order quotient. We assume that the solution has suitable properties, (i.e., it has first-order
continuous derivatives and its second-order derivative is integrable) so that the function’s a-order derivatives
in both Riemann–Liouville and Grünwald–Letnikov senses are the same. According to this property we dis-
cretize the operator Da

h in LFDAE using the definition of Grünwald–Letnikov fractional derivative:
I�a
� ¼ lim

h!0
hI�a
� ;
where hI�a
� denote the approximation for the shifted Grünwald–Letnikov operators, which read
hI�a
� f ðxÞ ¼ 1

ha

X1
k¼0

ð�1Þk
a

k

� �
f ðx� ðk � 1ÞhÞ: ð12Þ
Discretizing all variables, we replace LFADE by the finite difference equation
yjðtnþ1Þ � yjðtnÞ
s

¼ ahDa
hyjðtnÞ � b

yjðtnÞ � yj�1ðtnÞ
h

; ð13Þ
where the difference operator hDa
h reads
hDa
hyjðtnÞ ¼ �½cþhI�a

þ yjðtnÞ þ c�hI�a
� yjðtnÞ�: ð14Þ
In view of the operator (14), the operators hI�a
� (12) are given by
hI�a
� yjðtnÞ ¼

1

ha

X1
k¼0

ð�1Þk
a

k

� �
yj�1�kðtnÞ: ð15Þ
We now introduce the concept of a discrete random walk model. A discrete random walk on the grids
(jhj j 2 Z) is obtained by defining the random variables:
Sn ¼ hY 1 þ hY 2 þ � � � þ hY n; ðn 2 NÞ;

where S0 = 0; Y1,Y2, . . .,Yn are independent identically distributed random variables. Discretizing the space
variable x and the time variable t, the recursion Sn+1 = Sn + hYn+1 (following from the above definition of
random variables) implies that
yjðtnþ1Þ ¼
Xþ1

k¼�1
pkyj�kðtnÞ; ðj 2 Z; n 2 N0Þ: ð16Þ
By a suitable normalization, the yj(tn) may be interpreted as the probability of sojourn in point xj at time tn for a
particle making a discrete random walk on the spatial grids in discrete instants. When time proceeds from t = tn

to t = tn+1, the sojourn probabilities are redistributed according to the general rule (16). pk denotes a suitable
transfer coefficient, which represents the probability of transition from xj�k to xj (likewise from xj to xj�k) and is
spatially homogeneous and time stationary; yj(0) denotes the probability of sojourn of the random walker in
point xj at instant t0 = 0. Using the definition and the property of the Dirac delta function d(x), we have
yjð0Þ ¼
Z xjþh=2

xj�h=2

uðx; 0Þdx ¼
Z xjþh=2

xj�h=2

dðxÞdx ¼
1; j ¼ 0;

0; j 6¼ 0:

�
ð17Þ
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It is clear that this means that the random walker starts at point x0 = 0. Actually, the formula (16) can be
interpreted as a discrete random model only if pk satisfies
Xþ1

k¼�1
pk ¼ 1; pk P 0; k ¼ 0;�1;�2; . . . ð18Þ
Using (14) and (15), the finite difference Eq. (13) becomes
yjðtnþ1Þ ¼ yjðtnÞ �
as
ha

X1
k¼0

ð�1Þk
a

k

� �
½cþyjþ1�kðtnÞ þ c�yj�1þkðtnÞ� �

bs
h
½yjðtnÞ � yj�1ðtnÞ�: ð19Þ
The transition coefficients in (16) are easily deduced from (19) and are given by
p0 ¼ 1þ as
ha

a

1

� �
ðcþ þ c�Þ � bs

h ;

pþ1 ¼ � as
ha cþ

a

2

� �
þ c�

� �
þ bs

h ;

p�1 ¼ � as
ha cþ þ c�

a

2

� �� �
;

p�k ¼ ð�1Þk as
ha c�

a

k þ 1

� �
; k ¼ 2; 3; . . .

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð20Þ
To interpret the difference scheme (19) as a discrete random walk model, we have to check whether the coef-
ficients (20) satisfy the conditions (18). Directly from (19) it can be easily verified that
Xþ1

k¼�1
pk ¼ 1� as

ha

X1
k¼0

ð�1Þk
a

k

� �
ðcþ þ c�Þ �

bs
h
ð1� 1Þ ¼ 1� as

ha ðcþ þ c�Þð1� 1Þa ¼ 1:� �

Observe that all p±k P 0, k 2 N because of the inequalitiesð�1Þk a

k þ 1
< 0 and c± 6 0 for 1 < a 6 2,

whereas p0 P 0 under the condition
0 6 1þ as
ha aðcþ þ c�Þ �

bs
h
< 1:
Therefore, the time step s and the space step h are subject to the constraint
� as
ha aðcþ þ c�Þ þ

bs
h
6 1 ð21Þ
or a sufficient condition of the scaling constraint:
l ¼ s
ha 6

1

�aaðcþ þ c�Þ þ b
: ð22Þ
Clearly if the condition (22) of the scaling constraint is satisfied and consequently the constraint (21) is also
satisfied.
3. Convergence of the random walk model to a stable probability distribution

In this section, using the notations and techniques in [20], we will prove that the random walk model in the
above section converges completely to a stable probability distribution. The probability distribution has the
characteristic function (7).

Let us consider the generation functions
~pðzÞ ¼
Xþ1

j¼�1
pjz

j; ~ynðzÞ ¼
Xþ1

j¼�1
yjðtnÞzj; jzj ¼ 1 ð23Þ
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for the transition probabilities (transfer coefficients) pk and the sojourn probabilities yj(tn), respectively. From
the property of yj(0) in (17), we obtain
~y0ðzÞ ¼
Xþ1

j¼�1
yjð0Þzj ¼ y0ð0Þz0 ¼ 1:
From the discrete convolution (16), we have
~ynðzÞ ¼ ~y0ðzÞ½~pðzÞ�n ¼ ½~pðzÞ�n; ðn 2 NÞ:
The two power series in (23) are absolutely and uniformly convergent. Putting z ¼ eikh; k 2 R, we obtain
~pðzÞ ¼ ~pðeikhÞ and ~yðz; tnÞ ¼ ~yðeikh; tnÞ.

When fixing the parameter l as a positive number subject to the restriction (22), and letting the space step h

(and likewise s) go to zero, we have n ¼ t
s ¼ t

lha !1. Letting t = tn, we obtain
~yðz; tÞ ¼ ½~pðzÞ�t=s:
Putting z = eikh, the above formula gives
~yðeikh; tÞ ¼ ½~pðeikhÞ�t=s: ð24Þ

In the following we present a result which can be used to deduce the convergence of the random walk model
sequentially. From z = eikh and (23), ~yðeikh; tÞ can be viewed as the discrete Fourier transform for the numerical
solution of LFADE. It can be seen that if ~yðeikh; tÞ tends to bGaðj; t; hÞ, when the space step h tends to zero, the
random walk model (19) can be viewed to approximate the LFADE.

Thus, we have to prove the following result:

Theorem 1. If it suffices that, for fixed k,
~yðeikh; tÞ ! expð�tjkjaeisignðkÞhp=2 þ itbkÞ; as h! 0; ð25Þ

the difference scheme (19) interpreted as a discrete random walk can be viewed to approximate the related equa-
tion LFADE.

Proof. With the definition of ~pðzÞ in (23), the coefficients in (20), and using the binomial series for (1 � z)a, the
following equations are obtained:
~pðzÞ ¼ p0 þ
X1
k¼1

ðpkzk þ p�kz�kÞ

¼ 1þ as
ha

a

1

� �
ðcþ þ c�Þ �

bs
h
� as

ha ðcþ
a

2

� �
þ c�Þzþ

bs
h

z

� as
ha cþ þ c�

a

2

� �� �
z�1 þ

X1
k¼2

ð�1Þk as
ha

a

k þ 1

� �
ðcþzk þ c�z�kÞ

¼ 1� as
ha cþ �

a

1

� �
þ

a

2

� �
zþ

a

0

� �
z�1 þ z�1

X1
k¼3

ð�1Þk
a

k

� �
zk

 !"

þc� �
a

1

� �
þ

a

2

� �
z�1 þ

a

0

� �
zþ z

X1
k¼3

ð�1Þk
a

k

� �
z�k

 !#
� bs

h
ð1� zÞ

¼ 1� as
ha ½cþz�1ð1� zÞa þ c�zð1� z�1Þa� � bs

h
ð1� zÞ:
Putting z = eikh, the above formula is rewritten as
~pðeikhÞ ¼ 1� as
ha ½cþe�ikhð1� eikhÞa þ c�eikhð1� e�ikhÞa� � bs

h
ð1� eikhÞ:
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For small h, Taylor’s theorem gives
1� e�ikh ¼ �ikhþOðh2Þ;
e�ikh ¼ 1þOðhÞ:
Hence,
OðhÞð1� e�ikhÞa ¼ Oðhaþ1Þ:

We then obtain
~pðeikhÞ ¼ 1� as
ha ½cþð1þOðhÞÞð1� eikhÞa þ c�ð1þOðhÞÞð1� e�ikhÞa þOðhaþ1Þ� � bs

h
ð�ikhþOðh2ÞÞ

¼ 1� as
ha ½cþð1� eikhÞa þ c�ð1� e�ikhÞa þOðhaþ1Þ� � bs

h
ð�ikhþOðh2ÞÞ: ð26Þ
We note that ~pðei0hÞ ¼ 1, whereas we can use the result for j < 0 by complex conjugation of the j > 0 case.
Hence, we treat in detail the case j > 0.

Since k = jkjsign(k),
ð1� eikhÞa ¼ ð�ikhþOðh2ÞÞa ¼ ð�ikhÞað1þOðhÞÞa ¼ ð�isignðkÞÞajkjahað1þOðhÞÞa

¼ e�isignðkÞap=2jkjaha þOðhaþ1Þ
and
ð1� e�ikhÞa ¼ eisignðkÞap=2jkjaha þOðhaþ1Þ:

Inserting these results into (26), we obtain
~pðeikhÞ ¼ 1� as
ha ½jkj

ahaðcþe�isignðkÞap=2 þ c�eisignðkÞap=2Þ þOðhaþ1Þ� þ ibsk þ sOðhÞ

¼ 1� asjkjaðcþe�isignðkÞap=2 þ c�eisignðkÞap=2Þ þ ibsk þ sOðhÞ:
By use of (9) for c� and c+ and fixed k > 0, we have
cþe�isignðkÞap=2 þ c�eisignðkÞap=2 ¼ sinða� hÞp=2

sinðapÞ cos
ap
2
� isignðkÞ sin

ap
2

� �
þ sinðaþ hÞp=2

sinðapÞ cos
ap
2
þ isignðkÞ sin

ap
2

� �
¼ 1

sinðapÞ sin
ap
2

cos
hp
2
� cos

ap
2

sin
hp
2

� �
cos

ap
2
� isignðkÞ sin

ap
2

� �
þ 1

sinðapÞ sin
ap
2

cos
hp
2
þ cos

ap
2

sin
hp
2

� �
cos

ap
2
þ isignðkÞ sin

ap
2

� �
¼ 1

sinðapÞ 2 cos
hp
2

� �
sin

ap
2

cos
ap
2
þ 2isignðkÞ sin

hp
2

sin
ap
2

cos
ap
2
Þ

¼ cos
hp
2
þ isignðkÞ sin

hp
2
¼ eisignðkÞhp=2:
Thus,
~pðeikhÞ ¼ 1� asjkjaeisignðkÞhp=2 þ ibsk þ sOðhÞ:

Finally, by the definition of ~pðzÞ in (23) and the relation of ~pðeikhÞ and ~yðeikh; tÞ in (24), we obtain
logð~yðeikh; tÞÞ ¼ t
s
ðlogð~pðeikhÞÞÞ ¼ t

s
logð1� asjkjaeisignðkÞhp=2 þ ibsk þ sOðhÞÞ

¼ t
s
ð�asjkjaeisignðkÞhp=2 þ ibsk þ sOðhÞÞ ¼ �tajkjaeisignðkÞhp=2 þ itbk þOðhÞ:
Hence, (25) is obtained as desired. h
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4. An explicit finite difference scheme for LFADE in a bounded domain

In this section we consider LFADE in a bounded spatial domain [0, R] with the following initial and bound-
ary conditions:
ouðx;tÞ
ot ¼ aDa

huðx; tÞ � b ouðx;tÞ
ox ; 0 < x < R; 0 < t < T ;

uðx; 0Þ ¼ uðxÞ; 0 < x < R;

uð0; tÞ ¼ uðR; tÞ ¼ 0; 0 < t < T :

ð27Þ
We now discretize space and time by grid points and time instants as follows:
xj ¼ jh; j ¼ 0; 1; 2; . . . ;N ; h ¼ R
N

; tn ¼ ns; n ¼ 0; 1; 2; . . . ;K; s ¼ T
K
;

where h and s are the space and time steps, respectively. Then, we can discretize the variable un
j ¼ uðxj; tnÞ:

In the following we discretize Eq. (27), where we have adopted a first-order difference quotient in time (and in
space) at level t = tn (and x = xj) for approximating the first-order time (and space) derivative. To approximate
the operator hIa

� by hI�a
� , we adopt the Grünwald–Letnikov discretization of the fractional derivatives (12).

We can obtain an explicit finite difference scheme (EFDA) for LFADE with the initial and boundary con-
ditions (27) as
unþ1
j � un

j

s
¼ � a

ha cþ
Xjþ1

k¼0

ð�1Þk
a

k

� �
un

jþ1�k þ c�
XN�jþ1

k¼0

ð�1Þk
a

k

� �
un

j�1þk

" #
� b

un
j � un

j�1

h
; j ¼ 1; 2; . . . ;N � 1:

ð28Þ

Together with the boundary conditions un

0 ¼ un
N ¼ 0, Eq. (27) results in a linear system of equations, whose

coefficient matrix A has entries:
aij ¼

ð�1Þj�i as
ha c�

a

j� iþ 1

� �
; when j P iþ 2; i ¼ 1; 2; . . . ;N � 3;

� as
ha cþ þ c�

a

2

� �� �
; when j ¼ iþ 1; i ¼ 1; 2; . . . ;N � 2;

1þ as
ha

a

1

� �
ðcþ þ c�Þ � bs

h ; when j ¼ i ¼ 1; 2; � � � ;N � 1;

� as
ha ðcþ a

2

� �
þ c�Þ þ bs

h when j ¼ i� 1; i ¼ 2; 3; . . . ;N � 1;

ð�1Þi�j as
ha cþ

a

i� jþ 1

� �
; when j 6 i� 2; i ¼ 3; 4; . . . ;N � 1:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð29Þ
The resulting linear system of equations can then be written in the following matrix form:
U nþ1 ¼ AUn
where Un ¼ ðUn
1;U

n
2; . . . ;U n

N�1Þ
T.

5. Analyses of stability and convergence of EFDA

In the above section, EFDA for LFADE has been presented. In this section we will discuss the stability and
convergence of EFDA in a bounded domain. The stability of EFDA can be proved under the scaling restric-
tion condition (21) of the discrete random walk model.

Theorem 2. Under the assumption (21), EFDA (28) for LFADE is stable when 1 < a 6 2 in a bounded domain.

Proof. Under the assumption (21), the transition coefficients (20) fulfil the conditions (18). We have that the
sum of all elements in every row of the coefficient matrix A is less than the total sum of the transition coef-
ficients, i.e., is less than 1. Thus, we obtain
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jjAjj1 < 1:
According to the Lax–Richtmer definition of stability [25], we obtain that EFDA (28) for LFADE is stable
when 1 < a 6 2 in a bounded domain under the condition (21). h

To analyze the convergence, we find it worthwhile to recall here the following useful lemma associated with
the error estimate proposition referred to in [12].

Lemma 1. Suppose that f 2 L1ðRÞ and f 2 ‘aþ1ðRÞ, and let
hI�a
þ f ðxÞ ¼ 1

ha

X1
k¼0

ð�1Þk
a

k

� �
f ðx� ðk � pÞhÞ;
where p is a nonnegative integer, I�a
þ f ðxÞ is the left hand sided Riemann–Liouville (i.e., Grünwald–Letnikov) frac-

tional derivative at interval (�1,x). Then
hI�a
þ f ðxÞ ¼ I�a

þ f ðxÞ þOðhÞ
uniformly in x 2 R as h! 0.

With respect to the right hand sided Riemann–Liouville (i.e., Grünwald–Letnikov) fractional derivative I�a
�

defined on the interval (x, +1), we can establish a similar proposition to the left hand sided Riemann–Liou-
ville fractional derivative:
hI�a
� f ðxÞ ¼ I�a

� f ðxÞ þOðhÞ

uniformly in x 2 R as h! 0.

Theorem 3. Let U be the exact solution of Eq. (27) and u be the numerical solution of the finite difference Eq.

(28). Then u converges to U as h and s tend to zero when the condition (21) is satisfied.

Proof. Let error e = U � u, and at the mesh points ðxj; tnÞ; un
j ¼ Un

j � en
j . Substitution into the difference Eq.

(28) leads to
ðUnþ1
j � enþ1

j Þ � ðU n
j � en

j Þ
s

¼ � a
ha cþ

Xjþ1

k¼0

ð�1Þk
a

k

� �
ðU n

jþ1�k � en
jþ1�kÞ

" #

� a
ha c�

XN�jþ1

k¼0

ð�1Þk
a

k

� �
ðU n

j�1þk � en
j�1þkÞ

" #
� b
ðUn

j � en
j Þ � ðUn

j�1 � en
j�1Þ

h
;

i.e.,
ðUnþ1
j � U n

j Þ � ðenþ1
j � en

j Þ
s

¼ � a
ha cþ

Xjþ1

k¼0

ð�1Þk
a

k

� �
U n

jþ1�k þ c�
XN�jþ1

k¼0

ð�1Þk
a

k

� �
U n

j�1þk

" #

� a
ha cþ

Xjþ1

k¼0

ð�1Þk
a

k

� �
en

jþ1�k þ c�
XN�jþ1

k¼0

ð�1Þk
a

k

� �
en

j�1þk

" #

� b
ðU n

j � Un
j�1Þ � ðen

j � en
j�1Þ

h
: ð30Þ
According to the operators hI�a
� in (15) and hDa

h in (14), the first term on the right-side of Eq. (30) can be writ-
ten as
� a
ha cþ

Xjþ1

k¼0

ð�1Þk
a

k

� �
U n

jþ1�k þ c�
XN�jþ1

k¼0

ð�1Þk
a

k

� �
U n

j�1þk

" #
¼ �a½cþhI�a

þ U n
j þ c�hI�a

� Un
j � ¼ a½hDa

hU �nj :
From Lemma 1, we have
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Da
h ¼ �½cþI�a

þ þ c�I�a
� � ¼ �½cþðhI�a

þ þOðhÞÞ þ c�ðhI�a
� þOðhÞÞ�

¼ �½cþhI�a
þ þ c�hI�a

� � þOðhÞ¼hDa
h þOðhÞ:
Using Taylor’s theorem, we have
U nþ1
j � U n

j

s
¼ oU

ot

� �n

j

þOðsÞ
and
U n
j � Un

j�1

h
¼ oU

ox

� �n

j

þOðhÞ:
Consequently, we obtain
enþ1
j � en

j

s
¼ � a

ha cþ
Xjþ1

k¼0

ð�1Þk
a

k

� �
en

jþ1�k þ c�
XN�jþ1

k¼0

ð�1Þk
a

k

� �
en

j�1þk

" #
� b

en
j � en

j�1

h
þOðsþ hÞ:
Using the initial and boundary conditions e0
j ¼ 0; j ¼ 0; 1; . . . ;N and en

0 ¼ en
N ¼ 0; n ¼ 0; 1; . . . ;K, the above

equation can be rewritten in matrix form as
Rnþ1 ¼ ARn þM ; R0 ¼ 0;
where Rn ¼ ðen
1; e

n
2; . . . ; en

K�1Þ
T
;M ¼ sOðsþ hÞð1; 1; . . . ; 1ÞT and A is defined in (29). Hence, we can obtain
Rnþ1 ¼ ðAn þ An�1 þ � � � þ Aþ IÞM :
Thus
kRnþ1k1 6 ðkAnk1 þ kAn�1k1 þ � � � þ kAk1 þ kIk1ÞkMk1:

Since under the condition (21)
kAk1 < 1;
we obtain
kRnþ1k1 < ðnþ 1ÞsjOðsþ hÞj:

Consequently, when s! 0, h! 0, we have kRnþ1k ! 0, i.e., jen

jþ1j ! 0. This proves that u converges to U as s
and h tend to zero under the condition (21). h
6. Numerical examples

In this section, the following LFADE is considered:
ouðx; tÞ
ot

¼ aDa
huðx; tÞ � b

ouðx; tÞ
ox

; 0 < x < p; 0 < t < T ; 1 < a 6 2;

uðx; 0Þ ¼ uðxÞ ¼ sinðxÞ; 0 6 x 6 p;

uð0; tÞ ¼ uðp; tÞ ¼ 0; 0 < t < T :
In order to demonstrate the efficiency of the EFDA, we first validate it through comparison of the numerical
solution (EFDA) and the solution obtained by the latter method. This fractional method of lines (FMoL) was
first introduced by Liu et al. [5–7] to solve fractional partial differential equations. The FMoL for LFADE can
be written as
dul

dt
¼ � a

ha cþ
Xlþ1

k¼0

ð�1Þk
a

k

� �
ulþ1�k þ c�

XN�lþ1

k¼0

ð�1Þk
a

k

� �
ul�1þk

 !
� b

ul � ul�1

h
;

1 < a 6 2; l ¼ 1; 2; . . . ;K � 1;
where uj = u(xi,t).



0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance x

u(
x,

t)

t=0.2
t=0.4
t=0.6
t=0.8
t=1.0

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance x

u(
x,

t)

t=0.2
t=0.4
t=0.6
t=0.8
t=1.0

Fig. 2. EFDA for a = 1.7, h = 0.3, a = 1.5, b = 1.0, t 2 (0,1).
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Fig. 1. The numerical solutions (FMoL) and EFDA for a = 1.7, h = 0.3, a = 1.5, b = 1.0, t = 0.3.
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In Fig. 1, the numerical solutions (FMoL) and EFDA for a = 1.7, h = 0.3, a = 1.5, b = 1.0 are shown. It is
apparent from the figure that EFDA is in good agreement with the numerical solution. Fig. 2 shows the evo-
lution results using EFDA with h = p/100, s = 0.0001, a = 1.7, h = 0.3, a = 1.5, b = 1.0 (0 6 t 6 1,0 6 x 6 p).

Fig. 3 shows the response of the advection–dispersion process using EFDA for different h, which indicates
the skewness.

Fig. 4 shows the response of the advection–dispersion process using EFDA for different diffusion coeffi-
cients a. It indicates that the solution decays more quickly while the diffusion coefficient a increases.
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In order to demonstrate again the efficiency of the EFDA, we take the parameters a = 2, h = 0, b = 0 and
the initial and boundary conditions
uðx; 0Þ ¼ uðxÞ ¼ x2ðp� xÞ; 0 6 x 6 p;

uð0; tÞ ¼ uðp; tÞ ¼ 0; t P 0:
ð31Þ



Table 1
Comparison of EFDA and FMoL for a = 1.5, b = 0, a = 1.7, h = 0.3, t = 0.3, h = p/100 and different s

xi s = 0.001 (EFDA) s = 0.00115 (EFDA) (FMoL)

0.3142 0.23041473 230.54720622 0.23017721
0.6283 0.40603728 577.16038497 0.40562519
0.9425 0.54876256 869.39062934 0.54821574
1.2566 0.64661685 792.32079213 0.64598244
1.5708 0.68848748 437.27120064 0.68781812
1.8850 0.66770824 145.44209209 0.66706004
2.1991 0.58292127 28.89777087 0.58235311
2.5133 0.43764813 3.54256895 0.43721936
2.8274 0.23952071 0.40074543 0.23928533
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Fig. 5. The analytical solution, numerical solutions (FMoL) and EFDA for a = 2, h = 0, a = 0.25, b = 0, t = 0.3.
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The analytical solution [26] is
uðx; tÞ ¼
X1
k¼1

8ð�1Þkþ1 � 4

k3

 !
sinðkxÞe�ak2t:
In Fig. 5, the numerical solutions FMoL, EFDA and the analytical solution of LFADE with initial and
boundary conditions (31) are shown for a special case a = 2, h = 0, a = 0.25, b = 0.0. From Fig. 5, it can
be seen that our computed result is in good agreement with both FMoL and the analytical solution.

In Figs. 1–5 h and s satisfy the scaling restriction condition (22), then (21).
In order to examine the scaling restriction condition (21), a comparison of the numerical solutions for both

EFDA and FMoL is listed in Table 1 for the case with a = 1.5, b = 0, a = 1.7, h = 0.3, t = 0.3.
From Table 1 it can be seen that when the restriction condition (21) of stability is fulfilled, the results gained

from EFDA is close to the results gained from FMoL. However, when the restriction condition (21) is not ful-
filled, the results from EFDA do not match those from FMoL, which are in good agreement with the theory.

7. Conclusions

In this paper we have generated a discrete random walk model for LFADE. Under the restriction condition
(21), we also prove that the discrete random walk model converges to the related LFADE. Then EFDA for
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LFADE is presented, and the stability and convergence of the EFDA are discussed. Finally, some numerical
results are presented to show the application of the present technique, and rigorous analysis of the theory is
demonstrated.

Acknowledgements

This research has been supported by the National Natural Science Foundation of China Grant 10271098
and the Australian Research Council Grant LP0348653.

References

[1] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
[2] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, 1993.
[3] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.
[4] K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, 1974.
[5] F. Liu, V. Anh and I. Turner, Numerical solution of the fractional-order advection–dispersion equation, in: Proceedings of

International Conference on Boundary and Interior Layers – Computational and Asymptotic Methods, Perth, Australia, 2002, pp.
159–164.

[6] F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker–Planck equation, J. Comp. Appl. Math. 166 (2004) 209–
219.

[7] F. Liu, V. Anh, I. Turner, P. Zhuang, Numerical simulation for solute transport in fractal porous media, ANZIAM J. 45 (E) (2004)
461–473.

[8] V.E. Lynch, B.A. Carreras, D. del-Castillo-Negrete, K.M. Ferreira-Mejias, H.R. Hicks, Numerical methods for the solution of partial
differential equations of fractional order, J. Comp. Phys. 192 (2) (2003) 406–421.

[9] R. Gorenflo and F. Mainardi, Non-Markovian random walk models, scaling and diffusion limits, in: O.E. Barndorff-Nielsen (Ed.),
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